
NASA CR-5471 .."
1 - EOS 6969- SUMMARY

FLOW METER AND PROTOTYPE MERCURY

FEED SYSTEM DEVELOPMENT

il by
G. E. TRUMP

[ prepared for

_r_ NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

|" May 10, 1967
IL

fl

1967016528



i

NASA CR-54713

EOS 6969-Summary

SUMMARY REPORT

FLOW METER AND PROTOTYPE MERCURY

FEED SYSTEM DEVELOPMENT

by

G. E. TRUMP

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

l

February 25, 1967

li CONTRACT NAS3-7116

I!
Technical Management

NASA Lewis Research Center

21000 Brookpark Road

Cleveland_ Ohio 4_.135

Sanford G. _on_,_.-"

U ILECTRO-OPTZCALSYSTID4S0 INC. - b $ubsi_t£ary of Xeroz CorporaC£on
Pasadena _ Calif¢,rnie

I
m

1967016528-002



NOTICE

This report v'as prepared as an account of Government sponsored
work. Neithe' the United States, nor the Notional Aeronautics

and Space Administration (NASA), nor any person acting on
behalf of NASA:

A.) Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this

report, or that the use of any information, apparatus,
method, or process disclosed in this report may not
infringe privately owned rights; er

B.) Assumes any liabilities with respect to the u._eof,
or for damages resulting from the use of any infer-
motion, apparatus, method or process disclosed in

this report.

As used above, "person acting on behalf ef NASA" includes
any employee or contractor of NASA, or employee of such con-
tractor, to the extent that such employee or cor._roc_orof NASA,
or employee of such contractor prepares, dlssominetes, or
provides access to, ,my information pursuant to hi: employment
or contract with NASA, or his employment with such contractor.

' [ ,, , i • |_ !

Requests for copies of thLs report should be referred to

National Aeronautics and Space J_tnletrstioa
i Office of Scientific and Technical Inforastion
_ Attention: AFSS-A

_shtngton, D.C. 20646
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ABSTRACT

Work performed on a research and development program for mercury

propellant fe=d systems and a mercury flow meter is reported. The

development of labo:atory model and pro: ype model feed systems and

a laboratory control system is described. A novel flow meter which

determines flow rate by measuring the thermal conductivity of mercury

vapor has been developed. It was used to measure and control the

flow rate during extended llfe tests of both the laboratory and proto-

type model propellant systems.
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:i SUI_,_ARY

!.

i This report describes work performed during period 14 June 1965
the

to 5 February 1967 under Contract NASJ*7116. The objectives of the
program were to develop a mercury propellant feed system wh£ch can

serve as a prototype of a future flight rated system. The system isto deliver a controlled supply of mercury vapor to an ion engine.

i A mercury propellant feed system utilizing positive pressure feed andporous metal phase separators was developed. A laboratory model was
sucessfully tested for 1000 hours continuous operation. It had a
capacity of 45 Ibs mercury and utilized a stainless steel vaporizer

[_ with a porous stainless steel phase separator.

A prototype p¢opellant system was developed _rom the basis design of

the laboratory model. It had a slightly smaller propellant capacityand incorporated two important improvements: (1) small l£8htwetght
filling and pressurizing valves, and (2) a tantalum vaporizer with a

I porous tungsten phase separator. The prototype model was sucessfullytested for I000 hours at a mercury vapor flow rate of 0.8 q/set.
During this test the vaporizer operated at 200°C with an input power

i of approximately 6.1 watts.
A control system matched to the requirements of the laboratory and
prototype propellant systems and the mercury vapor flow meter was

developed. It was used in the long duration tests of the propellantsystems where it proved to be reliable.

A novel flow meter which determines flow rate by measuring the thermalconductivity of mercury vapor was also developed. It was used as the
flow rate sensor during the 1000 hour tests of both propellant systems.

H
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1. INTRODUCTION

This is the summary report on Contract NAS3-71163 Flow Meter and

Prototype Mercury Feed System Development. It was a program tc develop

mercury feed systems and flow meters_ demonstrate their performance

through extended life testsj and deliver to NASA-LeRC similar units which

will be compatible with the mercury thrustors under development there.

I.I Contributors

Principal participants in the program and their respective

areas of effort were:

i F.A. Barcatta Program Management
t

G. E. Trump Feed System and Flow Meter

[ Deve iopment

". I A.M. Schneider Control Systems

S. Zafran Quality Assurance

Other technical and engineering personnel who contributed to the program

are S. R. Klng_ J. T. Doyle s G. V. Seele, and A. N. Kosky.

1.2 Description of Program

The work described in this report was performed during the

t period 14 June 1965 to 5 February 1967. Major effort during the first
6 months of the program was on development of a laboratory model propel-

lant system and a flow meter. During the second 6 months emphasis wason long duration system testing and the fabrication and testing of

deliverable systems. The last portion of the program was devoted to

the development and long duration testing o£ a prototype propcllan _.

system and the fabrication and functional testing o£ deliverable units.

I the first 6 months of the
During a _.Jorlty development work

was completed on the laboratory model feed system and a series of

I preliminary evaluation tests completed. Flow meter development
during this time consisted o£ the fabrication and testing o£ a pre-

I limlnary unit to determine feasibility followed by the fabricationof one flow meter for further evaluation.

!
6969-Summry I
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During the second 6 month period, four laboratory model feed sys-

tems were fabricated. Three of these including their control systems

were functionally tested and delivered. The remaining unit was re-

tained for further testing. Two complete flow meter systems were fab-

ricated and functionally tested. A i000 hour llfe test of the labora-

tory feed system and a flow meter were successfully completed.

During _he last 8 months of the contract, _even prototype feed

systems were fabricated. One of these was successfully tested for

i000 hours. The other six units were functionally tested and delivered

together with the two flow meter systems.

6969-Summz_, 2
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2. LABORATORY FEED SYSTEH DEVELOPMENT

Development of the laboratory model mercury feed system and its

associated control system is described in this section. The design

requirements and the general approach taken are described first. This

is followed by a description of the developed hardware and finally by

a discussion of some component development tests that were pecformed.

Results of system tests are described in Section 4.

_- 2.1 Design Requirements and General Approach

The specifications and goals of the laboratory feed system

are that it provide a controlled flow of mercury vapor_ be capable of

operati ,.I under zero-gravity conditions, and be operated by an automatic

I control system. Required capacity is 45 pounds and the system should

be capable of expelling 95 percent of the initial load. Flow rates

controllable to an accuracy of • 1 percent over the range from 2 x 10 -4
L

grams per second to 2 x 10 -3 grams per second are required. A life test

Ii demonstration of one unit for a minlmum of 1000 hours in a vacuum
environment of 1 x 10 -6 torr is required. Three other units are to be

fabricated, functionally testad and deliver to NASA-LeRC. Included withI _aese units are their automatic control systems.

The general approach to the problom was to choose a ,,ode of

operation and control very s/Jnilar to that which had been used so

successfully in the past at this laboratory on cesium systems. This

involves storing the propellant in liquid form and then maintaining

liquid-vapor interfaces that are stable under both the one-g field of

t the laboratory and the near zero-g conditions of space. This is
accomplished by providing a barrier to liquid flow between the stored

I: liquid and the feed line to the engine. Figure I depicts the vaporiser
rqlon for a wetting liquid like cesium and a non-wetting liquid like

!-1
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mercury. In both cases surface tension forces are utilized to prevent

liquid flow beyond the vaporization surface. For the case of interest

here, the non-wetting case_ the relation

2_
= -- (1)

r

i can be used to approximate the barrier cell size that is required.

Here, _P is the pressure drop across a spherically shaped meniscus

I having a radius r and o is the surface tension. If the cell radius,
r in Fig. I , is chosen s,_ch that the calculated &P_ using this radius,
c

I is greater than the upstream pressure of the liquid, extrusion of the
liquid through the barrier is prevented. As an example, consider a

i typical case where the upstream pressure is 30 psi. This yields arequired cell radius smaller than 4.55 microns. This calculated cell

size is based on the assumption of unifozm cylindrical cells in theT

't barrier. However, to achieve such small cell size in actual practice,

one normally turns to porous metals as a barrier material. Because

can only be used as a guide in the initial selection of the barrier

material.

Evolution of vapor from the vaporization surface is

accomplished by heating the immediate area by attaching a sheathed

heater around the feed tube in the vicinity of the vaporizer. Control

of the flow rate is accomplished simply by varying the power to the

heater. This method of flow control ]_nds itself quite readily to a

closed-loop mode of operation where the ion beam current of the out-

put of a flow meter, for example, is fed back through a simple control

system to control the power to the vaporizer. Flow control in this

manner has been shown to control the fluw rate to within one percent.

The method chosen for liquid storage and delivery consists

I simply of storing the mercury in a sp_eric_,l storage chamber containing
a hemispherical elastomer diaphragm. Gas pressure applied behind the

diaphragm forces the mercury from the resccvoir as it is consumed.This method of storage provides positive assurance of propellant

delivery independent of the external gravitational environment.

U 6969-Su=mary 5
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2.2 Hardware Description

The development of the feed system and its control system

progressed through the development period with no major design changes

or significant modifications. A description of the laboratory feed

system and its control system foll_yws.

Laboratory Feed System

An overall view of the laboratory feed system is shown in

Fig. 2. Its components start at the left with a pressure chamber

which is load_ at the beginning of a test with a preset pressure of dry

nitrogen cr argon gas. This gas acts through holes in the diaphragm

support hemisphe-e on the elastJmer diaphragm. Mercury is loaded into

_he reservoir through the reservoir fill valve. Mercury capacity is

approximately 50 pounds. The vaporizer section is attached to the front

end of the revervoir using an O-rlng to provide a leak tight seal.

A thermally actuated valve was originally considered as part of the

vaporizer section. Its purpose was to prevent leakage of air into the

reservoir prior to installation in the vacuum system. This valve was

discarded in favor of an alternate approach to the problem which is to

pressurize the reservoir to a pressure such that, at any time and under

any fill conditions, the internal pressure will always be greater than

one atmosphere. Since the pressure chamber volume was chosen equal to

the reservoir volume, an i[.itial pressurization in excess of two atmos-

pheres is normally required.

A majority of the feed system is fabricated of 347 stainless

steel in an all welded construction. A butyl rubber compound was

chosen for the diaphragm because of the low gas permeability character-

_ istics of this material. An O-rlng is molded into the diaphgram to

provide a seal between the reservoir halves, Also molded to the

diaphragm are a series of ribs which act as passageways to prevent

entrapment of mercury within the reservoir.

A phot_raph :)t the components of the reservoir appears in

Fig. 3. An assembled unit is shown in Fi_. 4. '

6969-St_mary 6
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Figure 3. Laboratory Feed System --Disassembled

s
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Figure 4. Laboratory Feed System - Assembled

i .
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Control System

Design of the feed contrel system followed very closely the

basic design of similar units already in use at this laboratory. This

was possible because the method used for flow rate control, control of

the power to a sheathed heater on the vaporizer, is used on a majority

of the feed systems now operating at this laboratory. This method of

control has been found to be reliable and to control the flow rate to

wiLhin one percent.

The basic control system is quite simple. A block diagram

of the system is depicted in Fig. 5. Input from the flow rate sensor

(flow meter, ion beam current or other source) is compared with the

reference voltage at the input of the operational amplifier. If a

difference exists between the two signals, an error signal appears at

the output of the operational amplifier and drives the power controller

to either increase or decrease the average power delivered to the

vaporizer heater. An increase in flow rate above the reference setting

would cause the vaporizer power to be reduced and conversely a low flow

would cause a power increase. How closely the flow rate signal and

reference signal coincide during steady-state operation is determined

by the gain of the system. A high gain system as normally used forces i

the two signals to be quite close together. Essentially this means that

the flow rate cannot depart to any great degree from the set point

without experiencing a large corrective action. In practice the maximum

usable gain is determined by stability considerations.

A full schematic of the laboratory feed control system is

shown in Fig. 6. The flow rate signal is injected at the input of the

operational amplifier, UPA-2_ at terminal TB 101-3 and is compared

there .,ith the reference voltage. Reference voltage level is controlled T

by the ten-turn potentiometer R 104. The output of the operational I

amplifier drives one control element of the Robicon AC Power Controller.

Output of the power controller is coupled to the vaporizer heater through

a step-down transformer which reduces the vaporizer input voltage to a

usable level and provides the necessary high voltage Isolation for
t

6969-Summary 10 l
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operation with an io,Lengine The operational amplifier has provi-

sions which allow the use of various feed back elements to control

gain or provide compensation to insure loop stability.

Additional provisions include full wave rectifiers coupled to

the output circuit through current and voltage transformers T 102 and

T 103, respectively, to provide dc output voltages proportional to

vaporizer current and voltage. These are used to monitor and record

power levels to the vaporizer. One other provision makes it possible

to shut-off to the vaporizer in the event of unstable enginepower

operation. This is accomplished by inserting a relay contact at

terminals TB 101-5 and TB 101-6. Opening of the circuit at this point
reduces power to the vaporizer to zero.

I A photograph of the completed unit is shown in Fig. 7 .
Three of these units have been assembled and delivered. Check-out

j and functional testing was completed prior to their delivery. One• additional breadboard unit, electrically similar to those Just described,

was fabricated early in the program. It has been used for system testing

and was util_zed in the I000 hour tests of the laboratory and prototype

feed systems.

I- 2.3 Component Tests

Several t_sts were conducted to evaluate various components

of the laboratory feed system. _.ree component areas were of major

concern during the development period. These are: the vaporiser area

and in particular its construction and the type and pore else of material

that should be used for the porous plug, the diaphragm and its ability

to properly expel the mercury propellant and the type of seals that

should be used in the system.

Three vaporiser _onflguratlons have been tested. The first

two configurations tested were of stainless steel and varied primarily

in the manner in which the porous _aterlal was installed. The first

[ configuration had a shoulder machined into the vaporiser tube to position
i

the porous plug. The plug was held in place by a snap rin 8 arrangement.

I The second configuration utlliaed a straight tube. I_ this modification

It 6969-Summary 13
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Figure 7. Laboratory Feed Control System
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the porous material was actually formed in place within the t tbe and

yielded the most successful of the stainless steel units. This

configuration was used ip the 1000 hour life test and on the deliverable

units.

The third configuration employed a molybdenum tube, vapor

plated around a porous tungsten disc. Since it is desirable to mini-

mize heat transfer from the vaporizer downstream flange back to the

porous plug, and from _he porous plug back _o the main body o_ the

reservoir, stainless steel is _he logical choice for the vaporizer

body. However, the choice of tungsten for the porcus me=erial of the

third unit dictated that a ,material, mo]ybdenum in this case, with a

low expansion coefficient be used for the vaporizer tube. In order

I to help minimize thermal conduction in this unit the tube diameter was
reduced from 1/2 inch to 3/8 inch.

Preliminar> tests of the tungsten unit were not particularly
encouraging. High heat transfer rates _ay from the vaporizer plug

necessitated the use of excessive amounts of power to achieve design

flow rates. In one test a thermally isolating section fabricated of thin

wall stainless steel tubing was inserted between the vaporizer and the

reservoir. This reduced the heat transfer back to the reservoir to the

point where it was possible to achieve the maximum flow rate with less

than 50 watts. However, the heat conducted to the flow meter was still

excessive, forcing the flow meter temperature above the control temperature

of 200°C. This type of tungsten vaporizer was discarded in favor of the

unit developed for the prototype feed system described in Section 5.

Typical performaQce of various vaporizers is shown in Fig. 8

and Fig. 9. Figure 8 shows vaporizer temperature versus mass flow

rate for four stainless steel units and the tungsten unit. Figure 9

shows the power requirements of these same five units.

Of greatest importance in the selection of porous materials,

aside from mercury compatibility consideration, is their ability to

withstand the reservoir pressure and prevent extrusion of liquid

mercury into the vapor feed tube. Orisinal concepts were to use

i 6969-Summary 15
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relatively large pore material and low reservoir pressure. However,

deletion of the valve upstream of the vaporizer required that higher

reservoir pressure (in excess of 30 psi) be used. This necessitated a

series of extrusion tests to evaluate various grades of porous stain-

less steel.

The tests were performed by putting a small quantity of

mercury above the porous disc and gradually increasing the gas preBsure

above the mercury until extrusion of mercury through the disc was

observed.

The material tested was obtained from Asco Sinter£ng Co. in

five grades. The grade designation in this case is an indication of

the size particles that the material will filter. The results of the

tests are shown graphically in Fig. I0. Also shown is the calculated

pressure that would be required to force mercury through a circular

pore. Here the grade number was used as the pore radius in a_tcrons.

Configuration number 9, as shm_n in Fig. I0, wms flnally arrlved at.

It was used in the life test and for the dellverable systems. AlthouKh

not shown in Fig. I0, all of the tungsten units had oxtrusX_m pressures

greater than 40 psi.

Evaluation of dlaphra_a foldlng characteristics and expulsion

ability was carried out in a series of tests using a Lucite model

fabricated to the same dimensions as the actual feed systm hardware.

Several diaphragms were fabrlcated for preliminary testing. These

diaphragms were of two different Shore hardnesees, wlCh and without,

various fabric backings. Four diaphragms were first tested to deter-

mine the pressure difference that is required to force the diaphragm

from one extreme to the other in the reservoir. These dlaphragms had

a Shore hardness of 45 and 60, with and without, a fabric backing.

" The maximum pressure required was approxlmately I0 tort which is small

compared to the pressure required for operation of the feed system in

the laboratory.

The 60 Shore hardness diaphragm (without fabric backing) was

then used to determine the folding and expelllng characterlstlcs of

the diaphragm. Approximately 40 pounds of mercury were loaded into

6969-Statuary 18
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the reservoir model. The diaphragm was pressurized and photographs

(Figs. 11-14) were taken with various quantities of mercury in the

reservoir. For a particular quantity of mercury the pressure differ-

ential was adjusted to the value that the pressure chamber would supply

during actual operation of the feed system. The pressure for these

tests was varied from 5.05 psig to 3.25 psig as the mercury quantity

went from 40 pounds to 0.

The pictures clearly showed the diaphragm folding and the

ribs acting as expected. There is considerable "droop" to the dia-

phragm due to the weight of the mercury, but stretching was not evi-

dent. When the quantity of mercury had dropped to 30 pounds (Fig. ii),

the diaphragm started to press against the front wall of the container

at the top. As the quantity dropped further the ribs started to be

seen and the amount of mercury between ribs decreased. The last

picture taken (Fig. 12) showed the mercury almost completely expelled

with the area along the sides of the ribs acting as canals for the

remaining mercury. Figures 13 and 14 show s rear view of the diaphragm

at 40 pounds and 20 pounds, respectively. As a result of these tests,

the 60 Shore hardness diaphragm without fabric backing was chosen for

general use.

6969-Stmmmry 20
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_- Figure ii. Diaphragm Expulsion Test --Front View at 30 Pounds
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Figure 12. Diaphragm Expulsion Test - Front View Nearly Empty

i
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Figure 13, Diaphragm Expulsion Test - Rear View _ ) Pounds

L
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Figure 14. Diaphragm Expulslon Test - Rear View aC 20 Pounds

J
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3. FLOW METER DEVELOPMENT

Development of a mercury flow meter and its associated control and

measuring circuitry is described. The design requirements and general

approach taken is discussed first, followed by the theory of operation

and the results of preliminary feasibility tests of the concept finally

chosen. A description of the developed hardware follows. System tests

in which the flow meter is involved are discussed in the next section,

I 3.1 Design Requirements and General Approach

The basic cequirements of the flow meter are that it have the

capability of measuring and recording mercury vapor flow from I x 10-4 to-3
2 x 10 grams per second with an accuracy goal of i 1 percent, and that

I it be compatible with the mercury feed systems to be developed on the
program. Further, adc output voltage corresponding to the flow rate

and varying between zero and five volts over the flow rate range is to

be provided. Compatibility with the mercury thrustors under development

at NASA-LeRC is required. In addition, the flow meter is to be used

I with the feed systems in life tests and consequently should exhibit

excellent reliability.

!. Many methods of flow measurement exist, and any one of a

number of these could be utilized. However, the very low flow rates
r

1 combined with the high accuracy goal tend to eliminate all but a few

methods. Compatibility with mercury and operation in a hard vacuum

environment further complicates the problem.

A first choice which must be made is whether to measure the

i, flow in the liquid or vapor form. In general the measurlment of liquid
flow at these low rates usually involves the use of small bore capillary

tubing which is susceptible Co clogging or dimensional changes and is

Ii best avoided. In either case it is desirable to utilise a system wleh

no moving pares In order eo enhance reliability.

I!
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The measurement of vapor flow was picked as the better approach

and a relatively standard method chosen for its determination. This

is to determine the mercury vapor flow rate by measuring its pressure

upstream of a critical orifice.

3.2 Theory of Operation

Under conditions of choked flow, the pressure downstream of

the orifice has no effect on the flow tnrough the orifice and consequently

a measurement of the upstream pressure suffices to define the fl_ rate.

The mass flow rate, _, for choked flow conditions is given

by,

= __T_AP IRoYM)_ (__21) (y + l)/2(y I) (2)

where

A = orifice area (cm2)

P = upstream pressure (dynes/cm 2)

T = upstream gas temperature (OK)

R = gas constant 8.31 x 107 ergs/mole
o ..

M = molecular weight 8m/mole

y = ratio of specific heats.

The above equation indicates that for an accurate determination of the

flow rate the gas temperature must be known or controlled to reasonable

accuracy.

One additional factor which makes this method of measurement

an attractive choice is the fact that the flow meter will be exhausting

into a large distribution manifold and then through a aeries of large

holes into the discharge chamber of the thrustor. Vapor flow impedance

is expected to be extremely _ow through this path and consequently a

very low back pressure is anticipated. In essence thla means that the

pressure upstream of the orifice can remain qulte I_ and the orifice

can still operate in the choked flow mode. The crltlcal pressure ratio,

the ratio of upstream pressure to pressure at the orifice throat at
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which choking begins is given by

- (y/v-l)

Pt " "

where P is tie pressure at the throat, For mercury vapor this ratio
t

is about 2.05 and indicates that low pressure can be used in the

flow meter and still maintain chokpa flow conditions, One major

advantage derived from this is that a relatively large diameter orifice

can be used which tends to reduce the effect of dimensional changes

due to erosion and minimizes the possibility of obstruction by small

particles. For an orifice di_neter of 0.i cm and a mass flow rate of
"" -3

2 x I0 grams per second the upstremn pressure calculated from Eq. 2

-m | is approximately 3.5 torr.

Two methods were initially chosen as possible ways of measuring

the upstream pressure. The first of these was to determine the
temperature on a small thin-walled section of the flow meter at which

condensatlon occurred -- that is, essentially to determine the dew

point. Since there is a direct relationship between vapor pressure and

temperature, if the dew point temperature could be accurately detecmlned

+ the pressure would be known. The main disadvantage of this scheme is

that the dew point sensor would be required to cool to a temperature

i which was considerably below the temperature of a great majority of the

surrounding hardware, especially the back plate of the thrustor which

,ay operate as high as 350°C. _orced cooling, for example with a thermo-
electric device, could be used but this would increase the mass of the

t sensor and considerably reduce its sensitivity and response.The second method chosen is considerably less sensitive to

the surrounding thermal environment. In this approach the pressure is[:

[! found by the standard method of measuring the thermal conductivity of

the gas. Pressure gages of this type for the measurement of low pressure

Pirani and are now used extensively for
were origin411y developed by

pressure measurement in the range of 10 -2 to lO torr.

H
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The measure_ent of pressure in a Pirani type device depends

on the fact that the thermal conductivity of a gas at low pressures

is directly proportional to the pressure. To make use of this phenomenon

most Pirani pressure gages consist of a heated filament surrounded by

a tempcratu:e controlled enclosure. As the pressure varies, tbe power

conducted away from the filament varies+ The variation in input power,

filament temperature or filament resistance is used as an indication

of the pressure. Gages of this type appear to be most sensitive in
-2

the pressure range f;om I0 torr to i torr. Much above this the

thermal conductivity becomes independent of pressure and the sensitivity

is reduced.

In the linear region of operation the power conducted per

unit area from a filament running along the axis of a cylinder is given

by

E _ AoP ) (Tf To) (4)
c

where

E = the conducted power per unit area (watts/cm 2)
c

= molecular heat conductivity at O°C (watts/cm2°K microbars)

P ffipressure (microbars)

T ffi cylinder temperature (OK)
C

Tf = filament temperature (OK)

r 1 + (l -_)(r)
where ff ffi accommodation coefficient

a ffiradius of the filament (cm)

r = radius of the cylinder (cm)

For the case of interest here where the filament radius is much smaller

P than the cylinder radius, the correction factor, _ , approaches _.2

+

J
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In addition to power transfer by conduction, radiation from

the filament must be taken into account in any performance calculation.

As an approximation the relation for the total radiative transfer

between infinitely long coaxial cylinders can be used. Total radiated

power, Q, is given by

oAf (Tf4 -Tc4)

Q = (i/of) + (Af/Ac) (!/¢c-i) (5)

where

A t = area of filament

A = area of cylinder
c

¢f ffiemissivity of Af

¢ ffiemissivity of Ac c

o ffiStefan-Boltzman constant.

For our case where Ac is much greater than Af, equation 5 reduces to

Q =¢foAf (Tf4- Tc4) (6)

and the radiated power per unit area, ER_ becomes

(Tf4 4) (7)ER = cf o - Tc

Figure 15 shows the calculated behavior for a constant filament tempera-

ture of 300°C and a cylinder temperature of 200°C. Filament dimensions

are 0.001 inch x 0.50 inch x 6 inches. Filament resistance as a function

of pressure for a constant input power of 2.5 watts is shown in Fig. 16.

The use of a ribbon instead of a wire introduces negllgable error in

this calculation.

The calculated curves of Fig. 15 and Fig. 16 were based on

the assumption of a linear variation in thermal conductivity throughout

the pressure range. This is actually not the case, since at pressures

much above 103 dynes/cm 2 the thermal conductivity becomes independent

of pressure. Also at low pressures below I0 dynes/cm 2 very little

change is observed.
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6969-Sunmary

i
i

1967016528-037



TOTAL POWER
1

.I.-

O

Q_

0 POWER LOSSBYRADIATION

ER LOSSBY

UCTION162
10! 102 103 104 t

PRESSURE, dynes/cm 2
!

Figure 15. Power as a Function of Pressure for a Constant Filament
Temperature of 300°C
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In order to evaluate these effects and determine the most

desirable operating pressure range, a Pirani test device was fabricated

and tested. The constructlon of the test unit is shown in Fig. 17.

Figure 18 shows the unit attached to the mercury boiler which provided

mercury vapor for the test. The pressure within the test unit was

calculated from the boiler temperature. Data were obtained for

both constant filament voltage and constant filament current and the

results are shown in Fig. 19 and Fig. 20, respectively. Greater sensi-

tivity was achieved in the constant current mode. For example, at a

constant filament current of 0.75 amperes a voltage change of about 10C
-i

mV is obtained in the pressure range of from 2 x i0 tort to 4 torr.

3.3 Hardware Description

Flow Meter

The flow meter consists basically of a temperature controlled

cylinder with a critical orifice installed near one end. A heated

filament is mounted along the axis of the tube. Construction details

of the unit are shown in Fig. 21. A sheathed heater is brazed to the

body along with a platinum temperature sensing element. The unit is

then copper plated to a thickness of approximately 0.030 inch to

minimize thermal gradients. The removable orifice plate facilitates

filament installation and allows testing of various orifice sizes.

A thin wall section downstream of the orifice plate thermally isolates

the flow meter from the engine. The body is fabricated of stainless

steel and is machined to accept copper seals at each end. A 0.003 inch

dia. tungsten filament is used. Only one major design change was made

on the unit. This was to replace the nickel temperature sensing element

used on the first unit with one of platinum to increase reliability.

At the same time the wire diameter was reduced to increase the resistance

of the sensor from about 2 ohms at room temperature to about 15 ohms.

Four complete units were fabricated and used extensively in

system tests. A completed unit is shown in Fig. 22.
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Figure 18. Pirani Test Assembly

J
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Figure 22. Mercur_ Flow Meter
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Control and Measuring Circuits

Two main functions are required of the control circuitry.

These are: to provide an electrical output which can be calibrated to

read directly in mass flo_J rate and to maintain the body of the flow

meter at constant temperature.

The importance of maint_" "_!n_.g constant body temperature to

obtain accurate flow measurements is readily apparent from an exami-

nation of Eqs. 2 and 4. From Eq. 2 we see that the mass flow rate

through the orifice is inversely proportional to the half power of the

gas temperature. It was assumed in the design of the flow meter that

sufficient collisions will occur between the gas and the wall to bring

about complete thermal equilibrium of the gas with the wall during its

"- passage through the flow meter. Equation 4 shows that the amount of

_ heat transferred by conduction from _he filament to the wall is directly

proportional to the temperature difference between the wall and filament.

The temperatures chosen were a body temperature of approximately 200oC
F

and a filament temperature at the higher flow rates of as low as 300°C.

At Io_ flow rates (low pressure) the filament temperature reaches approx-

I 450°C. At above this value radiation losses be-
imately temperatures

come appreciable. To achieve i percent overall accuracy, the body

temperature therefore must be controlled _o less than • l°C.

The method used to accomplish this is to compare the voltage

developed -cross _he body temperature se, soz .ith that across _ fixed

reference -esistor whose voltage is 180 ° out of phase with the voltage

/ acros_ the sensor. Three conditions can occur. If the resultant

I output is in phase with the sensor voltage, the flow meter body is

too hot. Conversely for an output 180° out of phase with the sensor the

(
{ flow meter could be too cool. Zero output would indicate that the

sensor resistance and the reference re:istance were equal and that the

i bo_y temperature was correct. The output signal is amplified andJ

drives a power controller which _aries the power to the body heater in

_ order to maintain it at a constant temperqture.a

The method of temperature control Just described was found

] to be extremely sensitive; _ O.l°C was easily maintained in breadboardi _ tests of the circuit. Additional circuit details can be seen in the

' 39
6969-S_ary

1967016528-047



complete flow meter schematic shown in Fig. 23. The body temperature

control portion of this circuit occupies approximately the top third

of the schematic.

•3 Flow rate measurement is accomplished by determining the

voltage change across the filament as the flow varies and is done by

utilizing the filament at one element of a four arm bridge. Output of

the bridge is amplified and then demodulated to provide a 0 to 5 volt dc

sig'_al correspondinE to a flow rate of from 0 to 2 x 10-3 grams/sec.

The 0 to 5 volt output signal is read out on a digital

voltmeter. It is also made available for recording and can be fed

back to the feed control system to control the flow rate. The lower

portion of the schematic of Fig. 23 gives additional details of the

measuring circuit.

High voltage isolation of the entire unit is provided by a

series of transformers which are shown in the dashed-in area at the

right of the schematic. All of the components shown in the area are

assembled in a separate unit which is to remain in a protected high-

voltage area during thrustor operation.

One complete flow meter control unit was assembled early

in the _rogram and was used extensively in system testing including

the 1000 hour life test of the laboratory feed system. Although the

basic mode of operation of this unit is as described above, design

changes have been made primarily to increase accuracy. These

were incorporated into the two additional units that were assembled.

Figure 24 shows a photograph of one of these. The unit at the left

is the separate unit containing the transformers for high voltage

isolation. The laboratory feed control system is also shuwn here

mounted above the flow meter unit. One of these units was used

j during the I000 hour test of the prototype feed system as described

in Section 6.

!
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F£gure 23. Flow Neter Control System Schemat$c
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Figure 24. Feed and Flow Meter Control Systems
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4. SYSTEM TESTS

A series of system tests was conducted using various test

configurations. The results obtained are described in this section.

Before proceeding to the various tests, a brief description of the test

hardware w_ll be presented.

4.1 Test Hardware

J The general test setup that was used to evaluate the laboratory

feed system and flow meter is shown schematically in the block diagram

I of Fig. 25. This particular method of testing, in a closed configuration

was chosen to minimize the amount of mercury vapor that could escape

I into the vacuum so laboratory.
chamber and into the

During operation mercury vapor emergiug from the feed system

_ flows through the flow meter and then through a heated llne into
either a collecting container or into the flow meter calibrator. A

iv coolant line attached to the collection container is used to maintain
the mercury vapor pressure within the container at a negligible level.

Lines and valves between the flow meter and collector are maintained

I above the dew point with a series of sheathed heaters. Several iron-

constantan thermocouples are used to _onitor temperature. The

collecting container can be fitted with an ion gage to monitor the

internal pressure. A complete test assembly is shown in Fig. 26.

When a flow rate measurement is desired one of the valves to

the calibrator is opened, the collecting container valve is closed,

i and collection begun in the calibrator.
Two methods of flcs, calibration have been tried. In the

l_ £irst method calibration is accomplished by allowing the mercury vaporto condense and collect in a small bore _obe and electrically measurins

the rate of rise of the liquid column. The device consists of a small

U bore stainless steel tube through which a 0.004 inch diameter resistance

U
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element is insta]]ed. When a flow rate reading is desired a valve at

the bottom end of the tube is closed and the chan_e in resistance of the

element observed as _ function of rime. Becaus._ of the long calibration

tlmes required, up to several hours, the possibility of obstruction of

the small bore tube by mercury dro_ ets, and the sources of possible error,

this method of calibration was rejected in favor of the inherently more

accurate method finally chosen.

This method of flow rate calibration is depicted schematically

in Fig. 27, A direct weight measurement is made over a known time period.

Mercury vapor is first allowed to enter one collecting cup until a

particular weight increment has been collected or alternately until a

particular time has elapsed. The flow is then diverted to the other cup

to again balance the mechanism. The advantage here is that repeated

weight determinations can be made without exceeding the capacity of the

force transducer. The force transducer used here has a full scale capacity

of one gram although normally the flow rate measurement is made over only

a small increment of total transducer capacity. Cooling for the collecting

cups is accomplished by surrounding them with copper cups which are

liquid nitrogen cooled. The collecting cups are of course completely

free to move within the copper coolant cups. Adjacent surfaces are

blackened to enhance heat transfer.

Transducer calibration is accomplished prior to a test by

adding known weights to one of the cups and adjusting the output

which is recorded on a strip chart recorder. Several attentuation

positions on the transducer control unit allow it to be used for

flow measurements throughout the flow range. The unit can be adjusted

to give full scale indication for a weight change of 0.006 grams.

The first unit that was assembled used a standard knife

edge at the balance point and utilized the beam and support stand from

a commercial precision beam balance. Alignment problems plus excessive

vacuum test chamber vibration led to the first modification. This

change was to use a commercial flexure made by the Bendix Corp. at
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tilebeam pivot p_int iilplace of the knife edge. Although several

modifications have been made to the unit including heat shielding on

the collecting cups and resizing of the plumbing leading to the

collecting ct_ps, some discrepancy exists between the readings taken on

either side. This is attributed to incomplete vapor condensation in

the collecting cups and indicated that additional refinement was

necessary. An actual calibration recording obtained with this unit is

shown in Fig. 28.

4.2 Te6t Results

Complete system tests that have been conducted to date can

be divided into two categories; those of a developmental nature and

those conducted to functionally test deliverable hardware. Little

more need be said here about the functional test other than that

their purpose was to checkout the deliverable systems prior to delivery

to NASA-LeRC. The same basic test arrangement was used for these

tests as for the development tests.

All system tests of the laboratory system are summarized

in Table I. The development tests, culminating with the I000 hour

life test, will be di=_ussed further here. For the first test the SN-I I
|

laboratory feed system was used. The vaporizer plug used in this

dssembly was a 25-50 grade stainless steel disc, press fit into the
!

vaporizer. The diaphragm was 60 Shore hardness without fabric backing.

Ten pounds of mercury were vacuum loaded into the reservoir. After

loading the mercury the gas pressure in the pressure chamber was adjusted

to an absolute pressure of 3.6 in. Hg. This is a sufficient pressure

to force the full ten pounds into the vaporizer.

i
I

r_ _
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During the test the vaporizer was operated at temperatures

fr_ I00 to 200°C wi_h the tube type calibrator used to determine the

mass flow rate. With the 25-50 grade porous stainless steel vaporizer

disc, the required flow rates were obtained at temperatures of less
O

than i00 C and power levels of approximately five watts. After 20

hours of operation a large deviation from the expected flow rate

was observed. When the system was disassembled a large quantity

(5 cc) of mercury was found on the downstream side of the porous p]ug.

A check on the extrusion pressure for this vaporizer showed a value

of only i psi where before the test it had been approximately 3.8 psi.

This is attributeu to the fact that since the vaporizer disc had

been pressed into the vaporizer tube, leakage around the periphery

of the disc could have occurred. No extrusion has been observed in

subsequent tests which used discs sintered in place.

The system was then reassembled for the second test using

a vaporizer made from a section of tubing into which had been slntered

a 10-15 grade stainless steel disc 1/16 inch thick. The pressure

chamber pressure was set at 6.5 psia for tests with this vaporizer.

The maximum required flow rate was obtained with a vaporizer

temperature of 140°C and a power level of 8 watts. Tests in chls

configuration were continued for a total of 25 hours. All portions

of the system performed as expected during this time. This test was

terminated in order to add the flow meter to the system and to use

the flow meter and feed system control consoles in closed loop operation,

i All subsequent tests were conducted in the closed loop mode using the

,i flow meter for flow rate sensing

i For the third test the feed system contained a diaphragm ot
65 Shore hardness without fabric backing and was pressurized to 6.5

psia. The vaporizer contained a 10-15 grade porous stainless steeli

disc. the flow meter orifice was 0.030 inch diameter. The flow meter

_ body temperature was approximately 200°C and the filament was first

operated at approximately 300°C. Under the above conditions the

:i
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system was operated in a close_ 'oop mode, i.e., the flow meter output

was used to control t_e power to the vaporizer. The system worked as

expected but did not appear to be as sensitive as required. The

temperature of the flow meter filament was then raised to approximately

470°C. The sensitivity then appeared to be quite good. This system

was then run for approximately 246 hours at various flow rates.

_le vaporizer temperature for the maximum flow rate of

2 x 10-3 grams per second was approximately 200°C at a power level of

approximately 20 watts. The data indicate that desired flow rates

result from a pressure within the flow meter of about 2-20 mm Hg.

where the output of the fl_w meter has a fairly flat slope. During the

latter part of this test the vaporizer temperature was observed to

gradually increase. It was not clear whether this was due to a malfunction

in the vaporizer due to clogging or , t aLtual change in flow rate which

was not recorded by the flow meter. The latter reason now seems more

likely, however, since this phenomena was not observed in subsequent tests.

In the fourth test the flow meter orifice size was increased to

0.060 inch diameter to lower the upstream pressure to a more sensitive

range. The high pressure (2-5 grade high density) vaporizer was installed.

The balance type flow meter calibrator was also used for the first time.

Pressure chamber pressure was set at 19 psia. This test was terminated

after approximately 115 hours of operation to install the flexture type

calibrator.

The fifth test was started on 28 December 1965. The test

assembly was the same as used on teat 4 except for the new calibrator.

The best flow rate measurements were made with this calibrator although,

as mentioned earlier, some discrepancy exists between the readings

obtained in the two collecting cups.

The test continued for a period of 263 hours and was tenainated

in order to prepare for the high-voltage test. Primary purpose of the

teat was to obtain extended operating time on the vaporizer and to further

evaluate the flow Neter. The vaporiser used for this teat consisted of

a 2-5 grade high density porous stainless steel disc sintered into a
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stainless tube. The flow meter used a 0.060 inch diameter orifice.

The gradual increase in vaporizer temperature observed in

test 3 war _o: evident. Vaporizer temperature and power were relatively

constant throughout the test. .Maximum flow rates (2 x 10-3 g/set)

were obtained at a vaporizer temperature of 290°C. The test was terminated

in order to prepare for the high voltage compatibiliuy test.

The purpose of the sixth test was to determine the effect,

if any, of applying high voltage with a large amount of ripple to the

system and also to observe any transient effects when the high voltage

supply was alternately switched on and off.

Tested were the LFS-I feed system, the FM-2 flow meter, the

LCS-3 laboratory feed system control console and the FMC-3 flow meter

control console. The tests were performed in the 3 ft x 9 ft vacuum
-6

chamber at a pressure of less than i x I0 torr.

One side of the vaporizer heater, flow meter body heater,

flow meter filament, and flow meter sensor element were attached to

a cor_non point which was then attached to the feed system and to the

positive side of a high voltage power supply. There was approximately

five pounds of mercury in the feed system at a pressure chamber pressure

of approximately 17 psia.

The feed system and flow meter were operated in a closed

loop mode at a flow rate of approximately 2 ms/set. The high voltage

was then switched on and off several times with no perceptible change

in flow rate, vaporizer temperature or flow meter body temperature.

: The flow rate was then changed in a series of steps and allowed to

i regulate at each step. During these steps there was no indication
of disturbance due to the high voltage. The applied voltage was 10 kV

with a ripple of approximately 1200 volts peak to peak. The test

t was terminated to prepare for the 1000 hour life test.

J The I000 hour llfe test of the laboratory feed system was

started on 10 February 1966 and completed on 24 March 1966. Total

; accumulated time was 1014 hours and 20 minutes. The _ystem operated
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continuously except for a brief period of about 5 minutes when a power

cord supplying power to the control console was accidentally disconnected.

The system utilized a stainless steel vaporizer. The run was originally

attempted with a tungsten vaporizer, however it was found that a flow
-5

rate of only 2 x i0 grams/sec was obtainable at the full output

power (70 watts) of the control system. The stainless steel vaporizer

that replaced the tungsten unit is the one which had been used in

! previous tests and had already accumulated 456 hours of operation.

"" Ale test assembly consisted of the first feed system, LFS-I,

i with a stainless steel vaporizer, flow meter FM-2 which has a platinumtemperature sensing element and a 0.095 inch diameter orifice and the

breadboard feed and flow meter control units, LCS-I and FMC-I, respectively.

I The feed system was loaded with 20 pounds of mercury and pressurized to

34 psia. It was attached to the flow meter and installed in a test

assembly to schematically in Fig. 25.
similar that shown

Mercury vapor is collected in a water cooled collector

Ii except for brief periods when the flow is diverted to _he calibrator.
The collector was weighed before the test. At the en Jf the test the

mercury collected in both the collector and calibrator was measured to

determine the total quantity consumed.

In addition to the instrumentation provided by the control

consoles and the flow meter calibrator_ eleven iron-constantan

thermocouples were used to monitor temperatures on the test assembly_

The outputs of these were recorded on a multipoint strip chart recorder.

A two channel strip chart recorder recorded the flow meter output and

the output of the flow meter calibrator. Vacuum chamber pressure was

monitored with a standard ion gage and was recorded periodically in

the log booK.

The behavior as a function of test time of seven of the more

important parameters is shown in Fig. 29 and Fig. 30. A brief

discussion of each of these follows.

f -
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The temperature of the vaporizer is measured with an iron-

constantan thermocouple _ttacl-edadjacent to the vaporizer heater and

approximately 3/16 inch downstream of the vaporizer plug. Its output

is recorded on a strip c,_,a:'trecorder. -

The flow meter output is displayed on a digital volt meter --

and is recorded on a strip chart recorder. The values plotted in the

figure are readings taken from the digital volt meter. Since short

term variation of the output is about 20 mV, the values plotted are

approximate averages.

The third plot of Fig. 29 shows the mass flow rate as measured

with the calibrator. The values plotted here were obtained from the

right side of the calibrator. A large total variation is observed

here. However, the calibrator used shows a large discrepancy between

the right and left side and suggests that the values obtained with the

calibrator may be considerably in error.

The last plot of Fig. 29 shows the power supplied Co the

vaporizer heater. It is calculated from the current and voltage

output of the control system. Since in the closed loop mode of

operation the current and voltage -eluctumte considerably the values

plotted here are estimates of the input power, i

The body temperature ratio (Fig. 30) is a measure of the

stability of the flow meter body temperature. It is the ratio of the

voltage across the platinum sensor and the voltage across a fixed

reference resistor. A I percent vsrlatlon of the ratio is equivalent

to about a 6°C variation of the body temperature.

Vacuum chamber pressure history is shown in the second plo.'.

of Fig. 30. The high pressure point st 290 hours occurred when the

diffusion pumps were accidentally shut off. The run was not interrupted

at this time. il

The last plot shows reservoir temperature. It ts measured

an £ron-constsntan thermocouple and recorded on s strip chart _J

_m

with

recorder.

U
,o I
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At apFroximately 600 hours the vaporizer power and temperature

and the mass flow r,1_e increased rapidly. The reason for this increase

is difficult to explain, as the flow meter output indicated no change in

flow rate.

Of particular significance is the behavior at about 725

hours where the vaporizer power and flow meter output showed marked

deviations from the general trend. This could indicate a momentary

i increase in the flow rate although a measurement with the calibrator
of the mass flow rate at that _me did not show a large change.

However at the next data point, 737 hours, the measured flow rate

I had jumped to a new level.

During the last 200 hours the vaporizer power and reservoir

I temperature gradually incre_sed. After the run it was determined

that a majority of the mercury had been consumed. This accounts for

I the decrease in reservoir temperature and vaporiser power toward the
end of the run since thermal conduction back into the reservoir vas

reduced.
Neglecting the one point at 725 hours the flow meter output

" remained constant to within ± 1.4 percent throughout the entire run.
The body temperature ratio indicates that the flow meter body temperature

was held constant to l°C.

I Followin8 the run the system was disassembled and examined.

The flow meter was clean with no discoloratim_. The vaporiser however

showed some discoloration of the downstream face of the vaporizer

plug. No mercury was visible on the down_tremm side.

The vaporiser vas s._.ctioned and photographed (Plg. 31).

A majority of the discoloration that is seen occurred prior to the run

f during the fabrication of the unit. Some wetting was observed on the"

upstream face of the porous disc. In general the unit appeared to be

in excellent condition with no evidence of erosion. A portion of the

I _ vaporizer disc was 8pectrosrsphically analyzed. 2he result of the

analysis is shown in Table IT. Total operating time on the vaporizer

_I exceeded 1450 hours.
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Figure 31. 1450-Hour Vaporizer - Internal View
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TABLE II

Analysis of Stainless Steel Vaporizer After I000 Hour Run

Element Per__

, Mn .5

Si .5

Mo .5

Cu .4

_n .004

AI .001

.oot
Cr 17.

L Ni 9.5

Fe Ram.

Wet Analysis

.02

i

J

6f'
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The quantity of mercury consumed during the run was determined

by measuring the quantity collected in the vapor collector and in the

calibrator, This was 18.65 pounds, leaving approximately 1.35 pounds in

the reservoir. The calculated average flow rate was 2.32 milligrams

per second. This unexpectedly high flow rate was considerably above

those measured with the calibrator. The explanation of the discrepancy

is that a good portion of the mercury vapor entering the collecting cups

of the calibrator is escaping. The probl_m was studied and new collecting

cups with better collecting efficiency were fabricated.

A spectrographic analysis of the mercury collected during the

run was performed. The procedure used was to evaporate the mercury sample

to dryness and then spectrographically analyze the residue. The result

of this analysis is shown in Table III. The only major contaminant

was lead. No explanation for the lead content has been determi: _d.

Following the test the flow meter was removed from the

system and was found to be clean and dry. The filament resistance was

1.38 ohms where before the run it had been 1.40 ohms. This is s

resistance change of about 1.5 percent but a difference in the ambient

temperature when the resistance was measured ccmld account for the I
Idifference. The filament diameter was measured and found not to have

changed. I
A measurement of the orifice size showed no chanse.

Following the run fixed resistors were substituted for the

filament of the flow meter in order to determine the operating temper- _]

atures of the filament and the variation of filament resistance as a

function of flow meter output. A r,,istsnc, chanse of 0.687 ohmwas i 1
_I

measured over the range of 0.to 5 volts flow meter output. This

corresponds to a change of 22 percent of the average operating resistance il

of the filament. The calculated fil_ent temperature varied between

356°C and 253°C for a flow meter output of from 0 to 5 volts, respectlvely. If
i j.
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TABLE III

Analysis of Mercury After I000 Hour Run

Element P.P.M.

Lead 1.2 to 6

Silicon .3

Antimony .3

Iron .3

Nickel .03

Calcium .03

Arsenic .006

Chromium .006

Boron .003

Aluminum .003

Manganese .003

l_gneelum .0006.

Bismuth .0006

Copper .0006

Barium .0006

Silver Trace

Ocher Elements None DeCecCed

h
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5. PROTOTYPE FEED SYSTEM DEVELOPMENT

Development of the prototype model mercury feed system is described

in this section. The design requirements are described first. This

is followed by a description of the developed hardware and finally by

a discussion of the porous tungsten vaporizer development tests that were

performed. Results of system tests are described in Section 6.

5.1 Design Requirements

The specifications and goals of the prototype feed system

are that it provide a controlled flow of mercury vapor and be capable of

operation under zero-gravity conditions. Required capacity is 30 pounds

and the system should be capable of expelling 98 percent of the initial

load. Flow rates controllable to an accuracy of ± i percent over the

range from zero to I x 10-3 grams per second are required at a power

level of 18 watts or less. A life test d-_nonstration of one unit for a

-6
minimum of i000 hours in a vacuum environment of 5 x I0 torr is required.

Six other units are to be fabricated, functionally tested and delivered to

NASA-LeRC.

5.2 Hardware Description

Design of the prototype system is _,ased on the design of the

laboratory model and, except for size (3C I_ capacity), vaporizer,

and valving, is the same. A drawing of the reservoir is shown in Fig. 32.

Pictures of the assembled and disassembled _ystem are shown in Fig. 33.

and Fig. 34.

The design consists of two equal v_lume chambers; a mercury

chamber and a pressure chamber. The chambers are separated by an

elastomer diaphragm which provides the rear liquid-vapor interface.
>

i Pressurizing the rear chamber forces the liquid mercury from the front

chamber into the vaporizer. A porous tungsten disc in the vaporizer

provides the front liquid-vapor interface. The pressure chamber is

pressurized, as it is in the laboratory model, to approximately 34 psia.
]

!
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Figure 33. Prototype Hercury Feed System
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Figure 34. Prototype Nercury Feed System Disassembled "i
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This pressure is sufficient to prevent air from entering the mercury

chamber when the feed system is at atmospheric pressure.

All metal parts of the reservoir are made from 347 stainless

steel. The diaphragm is made from a Butyl rubber compound. A flange

is provided on the pressure chamber fo_ the attachment of a pressure

transducer should such a transducer be desired.

The valve design (Fig. 35) for the prototype feed system is

based on the design of quick connecting air hose valves. A seal between

mating parts is made before, during, and after the valve is opened.

This coupling remains sealed until the valve has been completely closed.

The same design is used for the mercury fill valve and for the pressurizing

valve. The metal parts of the valve are made from 347 stainless steel,

the spring is stainless steel and the o-ring is Buna N rubber. The valve

is approximately 0.4 inch diameter and 0.5 inch long. A cap is provided

to prevent unintentional opening of the valve.

The drawinS of the prototype tungsten vaporizer Is shc_m in

Fig. 36. The vaporizer body is constructed entirely from tantalum to

match the thermal expansion of the tungsten button. The porous tungsten

button is electron beam welded in place. All body Joints are also de-

signed for electron beam welding. The heater sheath is tantalum and i8

brazed to the vaporizer chamber. Braze is also used as a seal where the

heater wire passes through the vaporiser body.

5.3 TunEsten Vaporiser Tests

Further testing of porous tungsten vaporiser materials and

fabrication techniques was performed durinK the prototype development

period. One test was to determine the permeability of porous tungsten

buttons made from angular and spherical powders. The results showed

values for spherical powder from 0.82 x 10 .6 to 1.15 z 10 .6 8:'cm'l.sec "1

1t_"1
j "ram and values for angular powders from 0.975 x 10 .6 to 1.35 x 10 -6

-1 _-i8m.cm -snc'l.mn . These values were determined using nitrogen gas.
e

] The average permeability values found vere 1.01 x 10 .6 for spherical

powder buttons and 1.231 x 10 -6 for angular powder buttons. The an4ular

povder buttons have a 22 percent increase in permeability over r_tt of
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the spherical powder buttons. The density of the spherical powder

buttons was 77.2 percent and that for the angular powder was 68 percent.

These same buttons were then welded into tantalum tubes so

that pressure required to extrude mercury liquid through the buttons

could be determined. There was no extrusion at a pressure of 74 pslg

for either type button Because of its better permeability the an-•

gular powder button was chosen for use in the prototype mercury

vaporizer.

i
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6. PROTOTYPE FEED SYST_ TEST

A I000 hour prototype feed system test was begun in November 1966.

This test was conducted in the same _'_nner as the laboratory system

i000 hour test. The test hardware, procedures, and result_ are described

in this section.

6.1 Test Hardware

The same test hardware previously used for testing the lab-

oratory feed system was used. One change however was made in the flow

meter calibrating device. Figure 37 shows the collecting cups, cooling

cups, an A transducer. The collecting cups were fabricated from thick

walled copper for greater thermal capacity. In addition, the top

portion of _ach cup was heat shielded by alternating layers of fiber-

frax and stainless steel foil. These modifications were made to in-

crease the collecting efficiency and to allow a more accurate deter-

mination of the mass flow rate.

The feed system was operated in a closed loop mode with a

deliverable mercury flow meter and control console, and the bread-

board model vaporizer control.

6.2 Test Results

The feed system was loaded with 20 pounds mercury, _res-

surlzed to 35 psla and installed in a 5 ft x 12 ft test chamber. Once

each day pertinent data was recorded and a flow rate determination

made. Figure 38 shows data obtained versus time foz vaporize..' power

and temperature, flow metar output, and calculated mass flow rate. In

addition to this data flow mater temperature, flow mater body ratio,

and tank pressure were recorded.
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Figure 37. CalibratorAssembly
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The system was operated for a total of 1057 hours. The average

flow rate determined by use of the calibrator was .61 mg/sec. The average

flow rate calculated from the reservoir weight loss was .80 mg/sec.

These values are much more consistant than those determined after the

laboratory system test indicating a decided improvement in the calibrator

collection efficiency.

Besides the collection efficiency problem one other factor

affects the operation of the calibrator and best explains the change

in performance near the end of the test. This is the difference in flow

impedance between the two arms leading to the calibrating cups and that

leading to the collecting reservoir. The impedance difference is large

enough to cause the flow meter to indicate a higher flow rate during

calibration. Because the system was operated in a closed loop mode,

this higher apparent flow rate is fed into the control loop and the

vaporizer power is reduced to obtain a constant flow meter output. When

the flow is redirected into the collecting reservoir the flow meter

indication decreases and the vaporizer power increases to compensate.

The actual flow rate is then higher than indicated during calibration.

An increase in plumbing diameter in the calibrator area would remove

this problem,

The test was operated at a vacuum chamber pressure of 5 x 10 -6

torr or less except for a period of about I0 hours commencing at

approximately 350 hours accumulated operating time and a period of

approximately 30 hours beginning at approximately 950 hours.

At 350 hours the foreline pressure safety meter failed. The

diffusion pumps and gate valves were automatically turned off. The faulty

meter was replaced and pumping was restored. During this time the tank

pressure gradually increased to 2 x 10 -4 tort.

At 950 hours the valve to the left collecting cup was accldentally
-5

left open. This caused the pressure to rlse to the low 10 tort range.

In order to rebalance the calibrator it was necessary to direct vapor

flow into the right cup for an equal period of time. During thls time

[
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there was a decrease in the vaporizer temperature and power. The reason

for this is most probably the increase in flow impedance during the time

when flow is directed into the calibrator.

The vaporizer temperature was sampled by an iron-constantan

thermocouple attached to the back plate of the vaporizer. The temperature

recorded is lower than the temperature at the porous tungsten button due

to some power lost in radiation. This error is only a few degrees due

to the excellant the-mal path involved. During the test the temperature

stabilized at about 2'0°C.

The va:_orizer power was read on calibrated Weston ampere and

volt meters. The p_ler, well below t_le required 18 watts, varied

between 6 and 6.5 watts during the test. Some of this varie=ion is due

to the adjustment of the vaporizer control to achieve a .65 mg/sec flow

rate. There was no discernable trend toward eithe: higher or lower

power throughout the test.

The flow meter output is adc voltage read on a digital voltmeter

and is proportional to the mass flow rate. Since this test does not directly

involve the testing of t_e flow meter the data is being taken for future

reference only. The flow meter is however an important portion of the

control loop and is being used as the reference signal for controlling

the fl_ rate.

The flow rate is determined by measuring the increase in weight

of a liquid nitrogen cooled collecting cup over a fixed period of time.

This is identical to the system used on the laboratory feed system test.

There is a difference in calculated flow rate between the left and right

collecting cups probably caused by a poorer collection efficiency of the

left cup. The data points shown are those calculated from data using the

right cup only. Some of the variation is again due to adjustment of

the vaporizer control to achieve the required .65 mg/sec flow rate.

Following the ez_d of the run the feed system was disassembled

and thoroughly examined. A sautple of mercury was removed from the

reservoir and spectrographically analyzed. There were no noticable

increases in major constituents after the test. The vaporizer was
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sectioned and was in perfect condition. There were no discolored

areas, corrosion, erosion or wetting of the tungsten by mercury.

6.3 Conclusions

The successful tests of this type propellant system indicate

that operating times far in excess of those corresponding to the pro-

pellant capacities used in the tests are feasible. In addition, flow

rate control using a mercury vapor flow meter and a closed-loop control

system was demonstrated. The narrow limits of variation of the vaporizer

power and temperature demonstrated the high degree of stability and

control of the system. In summary, the objectives of the program were

met and the feasibility of the design approach and performance charac-

'eristlcs of the propellant system are established.

[
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APPENDIX

QUALITY ASSURANCE

The quality assurance system employed to service the needs of this

prosram closely paralleled the system concurrently in use on NASA-Lewis

Co_tract NAS3-7112. Close cooperation between technical and product

assurance personnel resulted in a flexible, efficient system for pro-

viding program support.

The basic system may be described as a shop traveller scheme.

Quality information pertaining to fabricated articles and assemblies

is entered on the traveller while work is in process. The traveller

is ultimately placed in a permanent file as a record of actual detail

part history. Supplementing shop traveller information are equipment

logs containing test data and calibration records, and material certi-

fication files at receiving inspection. The shop travellers are Instru-

mental in establishing quality criteria. Engineering drawings, test

procedures, material and process specifications, and their respective

revisions are prepared with the aid of the quality information on hand.

A1. QUALITY ASSURANCE PROGRAMFUNCTIONS

Quality assurance program functions pertained to the overall pro-

ject activity and were not intended to be accomplished by any one

department or group. Specific quallty obligations were imposed on

organizational elements other than the EGg Product Assurance Group

which retained responsibillty for the execution of product assurance

policies and programs. A representative from Product Assurance was

assigned to the project to work together with these other organt-

zatlonal elements. The representative assisted these groups in per-

forming their quality assurance assignments. In this manner project

and quality activity were contlnuously Inte|rated.
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A2. QUALITY ASSURANCE PROGRAM INFORMATION

LFS-3 final inspection report was prepared for a delivered laboratory-

type mercury feed system including its control system.

LFS-4 and LFS-5 final inspection report was prepared for two delivered

laboratory-type mercury feed systems including their coILt_ol systems.

PFS-2 and PFS-3 final inspection report was prepared for two

delivered prototype mercury feed systems.

PFS-4, 5_ 6 and 7 Final inspection report was prepared for four

delivered prototype mercury feed systems.

Equipment logs, including test and calibration data, were also

prepared and maintained for each of the following:

Laboratory feed system S/N l, S/N 3, S/N 4, S/N 5

Laboratory control system S/N 2, S/N 3, S/N 4, S/N 5

Flow meter S/N 2 and S/N 3

Flow meter control system S/N 1, S/N 3, S/N 4

Prototype feed system S/N I, S/N 2_ S/N 3, S/N 4, S/N 5_ S/N 6p
sis 7.

One hundred and thirty seven shop travellers were processed during

the contract period. Quality information contained on completed

travellers was reviewed. Feed system vellums were revised in sccordance

with pertinent red-marks contained on the travellers.

A special parts processing instruction for preparation of 60 to

70 _ dense tungsten components was issued.

The following test procedures were_released:

6969-1) Laboratory Mercury Feed System

6969-3) Laboratory Feed Control System

6969-QAP-1, Rev. A) Inspection and Test Plan, Prototype
Mercury Feed System.
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